Nekrasov’s Partition Function and Refined Donaldson–Thomas Theory: the Rank One Case

نویسنده

  • Balázs SZENDRŐI
چکیده

This paper studies geometric engineering, in the simplest possible case of rank one (Abelian) gauge theory on the affine plane and the resolved conifold. We recall the identification between Nekrasov’s partition function and a version of refined Donaldson– Thomas theory, and study the relationship between the underlying vector spaces. Using a purity result, we identify the vector space underlying refined Donaldson–Thomas theory on the conifold geometry as the exterior space of the space of polynomial functions on the affine plane, with the (Lefschetz) SL(2)-action on the threefold side being dual to the geometric SL(2)-action on the affine plane. We suggest that the exterior space should be a module for the (explicitly not yet known) cohomological Hall algebra (algebra of BPS states) of the conifold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ω-Background and the Nekrasov Partition Function

In this talk we’ll aim to make sense of the Nekrasov partition function (as introduced in Nekrasov’s ICM address [Nek03]) as the partition function in a twisted deformed N = 2 gauge theory. While making the deformation is unnecessary – without it we’re just talking about the partition function in Donaldson-Witten theory – deforming the theory eliminates IR divergences, allowing a direct mathema...

متن کامل

Non-commutative Donaldson–Thomas theory and the conifold

Given a quiver algebra A with relations defined by a superpotential, this paper defines a set of invariants of A counting framed cyclic A-modules, analogous to rank-1 Donaldson–Thomas invariants of Calabi–Yau threefolds. For the special case when A is the non-commutative crepant resolution of the threefold ordinary double point, it is proved using torus localization that the invariants count ce...

متن کامل

Instanton Counting on Blowup. I. 4-dimensional Pure Gauge Theory

We give a mathematically rigorous proof of Nekrasov’s conjecture: the integration in the equivariant cohomology over the moduli spaces of instantons on R gives a deformation of the Seiberg-Witten prepotential for N = 2 SUSY Yang-Mills theory. Through a study of moduli spaces on the blowup of R, we derive a differential equation for the Nekrasov’s partition function. It is a deformation of the e...

متن کامل

Generating Functions for Colored 3d Young Diagrams and the Donaldson-thomas Invariants of Orbifolds

We derive two multivariate generating functions for threedimensional Young diagrams (also called plane partitions). The variables correspond to a colouring of the boxes according to a finite Abelian subgroup G of SO(3). We use the vertex operator methods of Okounkov– Reshetikhin–Vafa for the easy case G = Zn; to handle the considerably more difficult case G = Z2 × Z2, we will also use a refinem...

متن کامل

The Orbifold Topological Vertex

We define Donaldson-Thomas invariants of Calabi-Yau orbifolds and we develop a topological vertex formalism for computing them. The basic combinatorial object is the orbifold vertex V λμν , a generating function for the number of 3D partitions asymptotic to 2D partitions λ, μ, ν and colored by representations of a finite Abelian group G acting on C. In the case where G ∼= Zn acting on C with tr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012